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ABSTRACT

The automatic detection of runway hazards from a moving platform under poor visibility conditions is a multi-
faceted problem. The general approach that we use relies on looking at several frames of the video imagery
to determine the presence of objects. Since the platform is in motion during the acquisition of these frames,
the first step in the process is to correct for platform motion. Extracting the scene structure from the frames
is our next goal. To rectify, enhance the details and to remove fog we perform multiscale retinex followed
by edge detection on the imagery. In this paper, we concentrate on the automatic determination of runway
boundaries from the rectified, enhanced, and edge- detected imagery. We will examine the performance of edge-
detection algorithms for images that have poor contrast, and quantify their efficacy as runway edge detectors.
Additionally, we will define qualitative criteria to determine the best edge output image. Finally, we will find an
optimizing parameter for the detector that would help us to automate the detection of objects on the runway
and thus the whole process of hazard detection.
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1. INTRODUCTION

One of the current research areas of interest to NASA’s Aviation Safety Program is the automatic detection
of external hazards on a runway under poor visibility conditions. The presence of unexpected objects on the
runway can be a significant problem when landing an aircraft, especially in poor visibility conditions where the
pilot’s vision is considerably impaired. We define “poor visibility conditions” to include fog, smoke, haze and
dim lighting. Since the pilot has to multi-task various operations while landing the aircraft, we do not want
to make the process even more burdensome by adding the task of interpreting data from enhanced imagery to
detect presence of potential hazards. Hence we propose to detect the hazards automatically.

This system is based on the Multi-scale Retinex image-enhancement method (msr) (Section 2.1).1–3 In
addition to their exceptional image-enhancement capabilities, these methods show promise as a computational
platform for higher level visual information processing. This is, in part, due to the intrinsic ability of these
methods to produce “canonical” imagery by reducing the variability due to changing lighting conditions and
exposure errors. The canonical image is a high quality, stable, visual rendition of an arbitrary scene,4–6 that
forms the basis for sophisticated, vision-based, automation technology for future NASA aerospace missions. It
provides robust pattern constancy, and hence facilitates higher level image processing that is needed to perform
intelligent imagery analysis that can be used for external hazard detection and runway incursions. Image-
enhancement and intelligent analysis are used to automate the process of hazard detection from sensor imagery
to augment the pilot’s situational awareness. A major part of this effort is to segment the runway from the rest
of the image. To this end, we perform edge-detection on the image to find all the edges, and then analyze the
edge-image to segment the runway from the rest. In this paper, we present a new parametric edge-detection
method that allows robust detection of edges in poor visibility conditions.
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Figure 1: Illustration of the overall concept for detecting static runway hazards.

2. BACKGROUND

While making the pilot interpret imagery to detect hazards is a viable approach, it represents yet another task,
among myriad tasks, that the pilot has to handle during the landing process. We propose a new technique that
would automate the detection of objects on the runway and determine if they represent a hazard to landing.
This technique combines image enhancement with smart edge analysis to detect objects on the runway. There
are two main reasons for using image enhancement before edge extraction: the image enhancement operator

1. provides an illumination independent, and hence canonical, representation of the scene;

2. has the inherent capacity to enhance small signal differences and can, thus, bring out the detail in imagery
even in poor visibility conditions.

We have, previously, used this method successfully to provide better-than-observer visibility under conditions
of haze, fog, light clouds, and rain (Figure 4).6, 7 The proposed approach for detecting static objects is shown
in Figure 1. The vmsr enhanced imagery is further processed with an edge-detection operator to obtain an
edge-only representation of the image—see Section 2.2 for details. This representation provides additional
advantages:

1. The edge-only image is, in a sense, more canonical than the srvr enhanced imagery. This is because the
variations in shading that may still be present in vmsr processed imagery are virtually eliminated in the
edge-only image.

2. The edge-only image is also more immune to variations in imagery due to sensor noise since insignificant
edges such as those attributed solely to random noise are eliminated during the generation of the edge-only
image.

3. The edge-only image requires less space to store in a database and also requires less time for comparison
and retrieval.

To detect the presence of objects on the runway, the existing canonical edge representations of the runway∗

are compared with enhanced edge representations of the geometrically-corrected approach imagery as shown
in Figure 1. The effect of applying the enhancement method is to make the imagery of the runway (almost)
independent of the time of day, and the atmospheric conditions—whether it is sunny or cloudy—as discussed
in Section 2.1. The impact of using an edge-only representation of the enhanced imagery is discussed above.

∗Canonical representations of landing strips for different airports are retrieved from a database of canonical imagery.



Figure 2: Illustration of the overall concept for detecting moving runway hazards.

Differences in the stored canonical representation and the computed representation show the presence of static
objects in the scene.

Moving objects in the imagery are, in a sense, easier to detect than static objects. One does not require a
stored canonical representation of the runway in order to detect moving objects which can be detected simply
from inter-frame analysis of the imagery. Figure 2 shows how inter-frame differencing is used to detect moving
objects. Two consecutive frames in the image stream are srvr enhanced and represented using the edge-only
form. The frames are co-registered on a common grid to correct for the motion of the airplane. This can be
done by using the ancillary information from the GPS, and the airplane stabilization systems that record the
attitude of the aircraft. Once the frames have been registered to a common grid, a simple differencing operation
can be used to detect the presence of objects. Three or more frames can be used to determine if the objects are
moving toward or away from the aircraft.

Once an object has been detected, its size can be determined from its two-dimensional projection on the
image plane and the knowledge of geometry of the flight path and the orientation of the aircraft. The size of
the object then determines whether it is a potential hazard. The eventual goal is to have this process perform
in real-time and to flash potential hazards on whichever display the pilot is using. This can be used by the pilot
either as a cue to take evasive action or as a cue to take a closer look at the indicated area thus making the
detection of hazards less strenuous. The near-term goal is to develop the algorithms that can be used to (a)
detect the presence of objects on the flight approach under various visibility and weather conditions, and (b) to
determine the size of the object based upon the geometry of the flight path and the orientation of the aircraft.

2.1. Image enhancement

A fundamental concern in the development of resilient, vision-based, automation technology is the impact of
wide-ranging extraneous lighting and exposure variations on the acquired imagery. This concern can be con-
siderably ameliorated by the application of the (msr) image-enhancement algorithm.1–3, 8, 9 The msr is a
non-linear, context-dependent enhancement algorithm that provides color-constancy, dynamic range compres-
sion and sharpening:

Ri(x1, x2) =

κ
∑

k=0

wk (log (Ii(x1, x2)) − log (Ii(x1, x2) ∗ Fk(x1, x2))) , i = 1, . . . , N, (1)

where Ii is the ith spectral band of the N -band input image, Ri is the corresponding is the Retinex output, ‘∗’
represents the (circular) convolution operator, F is a (Gaussian) surround function, and κ is the number of the



Figure 3. The image enhancement operator successfully compensates for changing illumination conditions and exposure
errors. The camera aperture, shutter speed, and ISO setting were constant over this sequence.

scales. The Gaussian surround function is given by:

Fk(x1, x2) = akGk(x1, x2) (2)

Gk(x1, x2) = exp
(

−(x2
1 + x2

2)/σ2
k

)

(3)

ak =
∑

x1,x2

Gk(x1, x2), (4)

The σk are scale parameters that control the performance of the ssr: small σk lead to ssr outputs that contain
the fine features in the image at the cost of color, and large σk lead to outputs that contain color information,
but not fine detail.2, 3

In order to extract consistent scene structure from any image under widely varying scene and sensor con-
ditions, one has to think in terms of transforming the image into a “canonical” representation that effectively
eliminates such undesirable variability. The msr has proven to be a powerful tool for doing just this. Because of
its dynamic range compression and illumination independence properties, the msr provides consistent rendering
for imagery from highly diverse scene and sensor conditions. To expand the performance envelope of the msr

to handle narrow dynamic range images encountered in turbid imaging conditions such as fog, smoke, and haze,
dim lighting conditions, or significant under- or over-exposures, we have developed a “smart” framework of vi-
sual quality measurements and enhancement controls that we call the Visual Servo7, 10, 11 (vs). The vs assesses
the quality of the image in terms of brightness, contrast and sharpness, and controls the strength of the msr

enhancement. Figure 3 shows a sequence of images and its enhancement under visibility conditions that range
from acceptable to unacceptable. The enhanced image provides useful information in every case regardless of
the caliber of the original data.

Additionally, the enhancement can provide better-than-observer performance in many cases, especially when
the obscuration is due to fog, rain, or light clouds in otherwise good illumination. Figure 4 shows the performance
of the image enhancement operator on imagery acquired under hazy and cloudy imaging conditions. The
enhancements were compared with the recollections of the observer about the extent to which he could discern
features with the naked eye, or through the camera, at the time the image was acquired. In each case, according
to the observer, the enhanced imagery provided more information than could be discerned either through the



Figure 4. Images acquired with a Nikon Digital D1 camera during NASA Langley Research Center’s FORESITE test
flights. The enhancements provide better-than-observer visibility.

Figure 5. The impact of illuminant change was simulated by red, blue, and green shifting an image (top row). The msr

outputs are almost perfectly color constant (bottom row).



view-finder of the camera or with the naked eye. Although this is not a rigorous scientific test, it does justify
laying the groundwork for further testing and analysis.

The image enhancement process also provides illumination independence, i.e., the output of the algorithm
is (almost) independent of the type, or level, of illumination under which the image was acquired. This is
especially critical for automatic classification and detection algorithms that rely on comparing imagery of the
same scene at different times. The ability of the algorithm to produce images that are independent of the
change in illumination conditions due to changing sun angle and atmospheric conditions considerably simplifies
the automation process for detection and classification. Figure 5 shows an example illustrating the illumination
independent output produced by the algorithm.

The fundamental problems relating to enhancement of still imagery have been addressed in Jobson, et al.1, 2

and Rahman et al..3 Additionally, issues relating to enhancement of imagery under poor visibility conditions
have been addressed in Jobson et al.4, 7 and Woodell et al..6, 11

2.2. Edge Detection

Once the images have been enhanced and rectified, we perform edge-detection on the imagery to form a canonical
representation of the imagery stream. As stated earlier, there are two major reasons for performing edge-
detection:

1. edge-detection provides a certain degree of noise immunity since a considerable amount of noise can be
suppressed by the proper edge-detection mechanism;

2. edge-detection reduces the overall complexity of the problem by reducing the degrees-of-freedom present
in the original problem.

The Canny edge-detection operator12 is considered by many to be the best edge operator available. It stands
out from others in good localization of edges, and strong detection capabilities. It uses a technique called “non-
maximum suppression” to take care of spurious edge-pixels, and “hysteresis”—which uses an upper and lower
threshold—to determine the strength of the edges. A commonly used operator for edge-detection is the Sobel
operator13 which uses a 3 × 3 kernel with a higher weight assigned to the center pixel to bring out the finer
edges in the image. We initially used these operators are in our hazard detection procedure.

The main drawback of these, and other, edge-detection algorithms is that the strength of the edges in the
output image cannot be controlled easily. While some of the algorithms are parameterized so that the strength
of the edges can be adjusted, this is not an automatic process. We have developed an algorithm based on the
edge-detection algorithm by Zhang et al.14 which uses an integer logarithm ratio of pixels. This concept of
ratio provides better noise rejection than the above algorithms that use the difference operator. The integer
logarithm ratio algorithm is implemented in the following steps:

Step 1: Smooth the image with a Gaussian filter to remove high frequency noise.

Step 2: Compute the natural logarithm of every pixel in the image:

L(i, j) = log[I(i, j)] (5)

Step 3: Detect variations in x and y directions by taking difference of log values of the consecutive pixels.

Lx(i, j) = |⌊αL(i, j)⌋ − ⌊(αL(i − 1, j))⌋| (6)

Ly(i, j) = |⌊αL(i, j)⌋ − ⌊(αL(i, j − 1))⌋| ,

where α is the parameter which alters the strength of the edges in the image.



Figure 6. (top-left) Original; (top-right) Sobel edge output; (bottom-left) Canny output Threshold ratio 3:1; (bottom-
right) Canny output Threshold ratio 2:1

Step 4: Define a pixel as an edge pixel based on:

(Lx(i, j) = 0 ∧ Lx(i + 1, j) 6= 0) ∨ (Lx(i, j) 6= 0 ∧ Lx(i + 1, j) = 0) , (7)

where ∧ and ∨ represent the logical and and or operators, respectively. If we have a blob of pixels
having same gray level value, then their log values will be same and hence Lx(i, j) and Lx(i + 1, j)
both will be zeros. When the above condition specified in Equation 7 is not met the pixels will be
suppressed in the edge output. Any variations in the neighboring pixels will be picked up as edges
depending up the strength of the variations and the parameter α defined in step 3. Neighboring
pixels with large variations in the gray level values constitute stronger edges compared to those with
small variations.

Step 5: Repeat steps 3 and 4 in other required directions.

This algorithm was applied to the vmsr processed imagery but did not provide desired results: the edges
that were produced were too thick so did not provide good localization information. A closer analysis revealed
that the inherent fog or smoke in the image provided the necessary blurring to the image. Hence we got rid of the
initial smoothing of the image. One way to bring out edge-information in low contrast, high brightness images
is to examine the negative of the image. Our experiments on running the above algorithm on the negative of
the image instead of the image directly proved to be very successful as can be seen by looking at the examples
shown in Figures 7, 8 and 9.

As we stated earlier, the strength of the edges can be controlled by varying the value of α in Equation 6.
Higher values of α classify more pixels as edge-pixels and produce thicker edges, while lower values of α have a



Figure 7. Example 1: (top-left) Original; (top-right) Integer logarithm edge output; (bottom-left) Using the negative
of original Image ; (bottom-right) MSR on the negative of the image.

Figure 8. Example 2: (top-left) Original; (top-right) Integer logarithm edge output; (bottom-left) Using the negative
of original Image ; (bottom-right) MSR on the negative of the image.



Figure 9. Example 3: (top-left) Original; (top-right) Integer logarithm edge output; (bottom-left) Using the negative
of original Image ; (bottom-right) MSR on the negative of the image.

tendency to miss fine edge-detail though they preserve good localization information. We are currently exam-
ining methodology to automatically select appropriate values of α based upon image characteristics. Current
results have been produced by manually selecting an “optimal” value of α. Figure 10 shows the impact of
varying α on the edge-image. The results suggest that the optimal value of α probably lies between 5 and 8 for
the type of imagery that we examined for detecting hazards in poor visibility conditions.

3. CONCLUSIONS

Various popular edge detection algorithms have been simulated and tested for hazard detection on runways under
poor visibility conditions. Since we did not have access to images of runways acquired under poor visibility
conditions, we used images of roads with fairly heavy traffic to test the algorithms. The ability to detect cars
in poor visibility conditions gives us confidence that we should be able to detect hazards on a runway. The
work presented here is in early stages and a completely automated hazard detection system has not yet been
implemented. We are experimenting with the different operators needed to provide an automated system before
integrating the whole.

We have presented a new edge-detection methodology that incorporates an integer logarithm algorithm
produces with smart image enhancement to produce perfect edge detected outputs for poor visibility images.
Instead of preprocessing the images we tried to make use of the inherent blurring available in the image resulting
from poor visibility. An α parameter has been defined to automate edge detection in accordance to the strength
of the edges required. Various combinations of image variants have been tried for best results. The outputs
obtained using negative of an image followed by msr processing gave favorable results. With the help of
canonical inputs from GPS database and the output produced by the above algorithm we can successfully
detect the presence of static and dynamic hazards on a runway under poor visibility conditions.



Figure 10: (top-left) (top-left) α = 1; (top-right) α = 3; (bottom-left) (top-left) α = 5; (bottom-right) α = 8.
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